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su stained; th ey are, ineffect, sections th rou g h th e zero-
tu rbu lence manifold.

Considering first Fig . 1 (b), we see th at, at fixed q=!, th e
critical g radient R=LTc first rises with "E, as th e perpen-
dicu lar flow sh ear su ppresses th e ITG-driv entu rbu lence,
and th enfalls—inmost cases to0 —as th e PVG starts to
driv e tu rbu lence instead. Th is ph enomenonwas discu ssed
at leng th inRefs. [1 1 –1 3 ] (indeed th e cu rv e for q=! ¼ 8 is
tak en from Ref. [1 3 ]). Th u s, for ev ery q=!, th ere is an
optimu m v alu e of th e perpendicu lar flow sh ear "E (and
h ence of th e toroidal sh ear u0) for wh ich th e critical tem-
peratu re g radient R=LTc is maximized. We see th at redu c-
ing q=! increases th e maximu m R=LTc th at can be
ach iev ed withou t ig niting tu rbu lence. Fig u re 1 (c) shows
th at th is ru le applies for all considered v alu es of flow sh ear
[3 5 ]. Th is is to be expected, becau se lower q=! means
weak er PVG relativ e toth e perpendicu lar sh ear, allowing
h ig h er v alu es of th e perpendicu lar flow sh ear tosu ppress
th e ITG before th e PVG driv e tak es ov er.

Last, Fig . 1 (d) shows th e th reshold in"E abov e wh ich
th e PVG candriv e tu rbu lence alone, withou t th e h elpof th e
ITG; inoth er words, ev enconfig u rations with a flat tem-
peratu re profile wou ld be u nstable. At v ery h ig h q=!,
alreadya v ery small flow sh ear will driv e tu rbu lence; as
q=! decreases, h ig h er and h ig h er v alu es of "E are requ ired
for th e PVG tu rbu lence tobe su stained. It cannot be con-
clu siv elydetermined from th is g raph wh eth er, as su g g ested
by linear th eory [1 0 ], th ere is a finite critical v alu e of
q=! below wh ich PVG tu rbu lence cannot be su stained,
i.e., a nonzerov alu e of q=! corresponding to"Ec ! 1.
Howev er, for q=! & 7, th e critical "E is far abov e wh at
mig h t be expected inanexperiment [3 7 ], and soth e "E !
1 limit is somewh at academic. A definite conclu sionwe
maydraw is th at at experimentallyrelev ant v alu es of sh ear,
pu re PVG-driv en tu rbu lence cannot be su stained for
q=! & 7.

Th e zero-tu rbu lence manifold interpolated from th e nu -
merical data points is displayed inFig . 2 . Th e manifold
comprises th ree mainfeatu res: a ‘‘wall’’ wh ere th e critical
temperatu re g radient increases dramaticallyat low q=!; a
‘‘spu r’’ at low "E, ju tting ou t toh ig h q=! (wh ere, as "E

increases, th e ITG-driv entu rbu lence is su ppressed some-
wh at before th e PVG driv e becomes dominant), and finally
th e cu rv e wh ere th e manifold intercepts th e plane R=LT ¼
0, whose sh ape is described abov e.
Practical implications.—Inorder toillu strate better th e

implications of ou r finding s for confinement, we plot, in
Fig . 3 , contou rs of R=LTc v s q=! and th e toroidal flow
sh ear u0 ¼ dR!=dr=ðvthi=RÞ. Th e basic messag e is clear:
th e lower th e v alu e of q=!, th e h ig h er th e temperatu re
g radient th at canbe ach iev ed withou t ig niting tu rbu lence.
Once we h av e obtained th e lowest possible v alu e of q=!,
th ere is anoptimu m v alu e of u0 wh ich will lead toth at
maximu m R=LTc. We note th at th e dependence of th is
optimu m v alu e of u0 onq=! is not as strong as th e depen-
dence of th e optimu m v alu e of "E onq=! (clearlyth is mu st
be sobecau se u0 ¼ ðq=!Þ"E). Ina dev ice with anopti-
mized v alu e of q=!, a near maximu m critical temperatu re
g radient wou ld be ach iev able for u0 * 5, sh ears compa-
rable tothose observ ed inexperiment [3 ,1 6 ,1 7 ].
Wh ile simu lation resu lts obtained for Cyclone Base

Case parameters are not su itable for detailed qu antitativ e
comparisonwith real tok amak s, it is appropriate to ask
wh eth er ou r resu lts are at all compatible with experimental
ev idence. A recent stu dy [3 8 ] su g g ests th at certainly th e
qu alitativ e sh ape of th e dependence, and possiblyalsoth e
qu antitativ e v alu es, obtained h ere for R=LTc v s u

0 and q=!
are inag reement with th e temperatu re g radients measu red
inMAST [3 9 ].
Relation to linear theory.—Since th e mapping of th e

zero-tu rbu lence manifold u sing nonlinear simu lations is
compu tationally expensiv e, we may ask wh eth er linear
th eorycanpredict marg inal stability. Th e qu estionis also

FIG. 2 (color online). Th e zero-tu rbu lence manifold.
Tu rbu lence canbe su stained at all points ou tside th e manifold
(th at is, at all points with a h ig h er temperatu re g radient and/or
h ig h er v alu e of q=! th anth e nearest point onth e manifold). Th is
plot is made u p from th e sections shown in Fig s. 1 (b)–1 (d)
(h eav y lines) and th e manifold interpolated from th em (th in
g reymesh ).

FIG. 3 (color online). Contou rs of th e zero-tu rbu lence mani-
fold plotted ag ainst th e toroidal flow sh ear u0 ¼ dR!=dr=
ðvthi=RÞ ¼ "E=ðq=!Þ. Th e contou rs indicate th e v alu e R=LT ¼
R=LTc below wh ich tu rbu lence is qu ench ed.
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of q/ε was motivated by the physical considerations outlined
in the introduction; since ε varied little in our database, we
cannot distinguish any individual correlations of R/LTi with
q and ε. It is left for further study to determine whether
other properties of the flux surfaces matter (e.g., Shafranov
shift, triangularity, elongation, etc., which may affect the stiff-
transport threshold [12, 36]). We have not included n, Ti, Te,
which are not normalizable by any natural local quantities;
note that R/LTi is found to have large correlation with Ti

(cross-correlation coefficient of 0.56) within our database.
This correlation might be explained by the dependence of
collisionality on Ti which in turn controls the relative amplitude
of the zonal component of the turbulence [4]. This is explained
in more detail below. We also have excluded βi = 8πnTi/B

2

because, in the absence of large variation of B in our dataset,
βi is simply the normalized ion pressure and, similarly to
Ti, has a large positive correlation with R/LTi (it remains to
be investigated whether larger magnetic fluctuations at larger
βi are large enough to have an effect on turbulent transport
[37–39]).

3. Correlation analysis

We perform a canonical correlation analysis (CCA) [40] with
R/LTi treated as the dependent variable and the other seven
parameters as independent ones. This amounts to finding
the maximum correlations between ln(R/LTi) and linear
combinations of logarithms of 1, 2, 3, . . . , 7 other parameters,
leading to an effective statistical dependence
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This is of course not valid if the dependence of R/LTi

on any of the parameters is non-monotonic. A non-
monotonic dependence on γ̄E is, in fact, expected, with
R/LTi first increasing, then decreasing at larger values of γ̄E

due to increased transport from the PVG-driven turbulence
[9, 15, 16]. However, γ̄E in our database does not extend to

sufficiently high values for such a dependence to be observed
(see figure 1).

In table 1, the canonical correlation (the correlation
coefficient between the logarithms of R/LTi and the right-
hand of equation (1)) is given together with the corresponding
exponents α1, . . . , α7. We start by calculating the individual
correlations of R/LTi with each of the seven parameters
and then include pairs, triplets, etc., only if the correlation
improves. The strongest individual correlations of R/LTi

are with q/ε (64%) and γ̄E (49%). The overall fit is
measurably improved (70%) if both are included. Including
further parameters does not make a significant difference;
the third strongest (although not very strong) dependence is
on ν∗i. The results from such a multi-variable scaling can
be misleading if significant cross-correlations exist between
the parameters formally treated as independent. The cross-
correlations between all the parameters involved (including
R/LTi ) are shown in table 2. We see that there exist potentially
meaningful correlations between q/ε, γ̄E , ν∗i and ŝ, but they
do not change the basic conclusion from the CCA results
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Figure 1. The dependence of R/LTi (colour) on q/ε and
γ̄E = πrU ′

φ/vth i, showing (a) the individual data points and
(b) mean values of R/LTi within rectangular bins.

that much of the R/LTi variation can be accounted for by its
dependence on q/ε and γ̄E

9.
The dependence of R/LTi on q/ε and γ̄E is shown in

figure 1. R/LTi generally increases with decreasing q/ε and
increasing γ̄E

10, broadly consistent with the intuitive physical
reasoning explained in the Introduction and the numerical
study of [9].

The conclusion is that, at least on a rough qualitative level,
it is sensible to consider R/LTi to be a function primarily of q/ε

and γ̄E . Since the q profile tends to change more slowly than
other equilibrium profiles11, one may think of a critical curve
R/LTi,c(γ̄E) [42] parametrized by q/ε [9], the latter quantity
containing the essential information about the magnetic cage
confining the plasma.

4. Collisionality dependence

Even though the dependence of R/LTi on ν∗i is weaker than on
q/ε and γ̄E , a discernible inverse correlation between R/LTi

and ν∗i might be expected because zonal flows, believed to
suppress turbulence [11, 43], are more strongly damped at
higher ion collisionality [44–46]. To isolate this dependence,
we selected data points for approximately fixed γ̄E ∈ [0.7, 0.8]
and q/ε ∈ [5, 6] (the largest number of data points could
be found within these narrow ranges, with no measurable
correlation between R/LTi and q/ε or γ̄E). The resulting
figure 2 confirms a degree of inverse correlation between R/LTi

and ν∗i.
9 One of the discharges within our database has been analysed via TRANSP
analysis [41], and it shows that the power flowing from the electrons to the
ions is about 10% of the total ion heating power, which is consistent with the
small degree of correlation between R/LTi and R/LTe .
10 The broad scatter in figure 1(a) suggests that the correlation between q/ε
and γ̄E is weak; the lack of higher values of γ̄E at large q/ε is due to the fact
that the flow shear is weak at earlier times in the discharges, when the central
value of q is high.
11 The functional dependence q(ψ), where ψ is the flux-surface label, only
changes on the resistive timescale of the mean magnetic field.
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MAST

Correlation or causation?

Note: There are good theoretical reasons to believe 
that flow shear changes the threshold 
[e.g., Newton et al. 2010, PPCF 52, 25001;
AAS et al. 2012, PPCF 54, 055011]. 
There is also numerical evidence from CBC simulations
[Highcock et al. 2012, PRL 109, 265001].
But do we know this happens in real tokamaks? 



Does Turbulence Know?

considering the relevant ranges of values of Dr and DZ and
using the following fitting function
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The parameter p is used to account for global modes [11], as
well as for fluctuations in the neutral beam [37]. As we have
selected times during which there is no MHD activity (see
section 2.1), the value of p should be small. Indeed, in all
measured cases it is at most a few percent, therefore also
indicating that neutral-beam fluctuations do not affect the
measurements.

The fit (12) allows us to extract the spatial correlation
parameters of the turbulence: the radial, ℓr, and poloidal, ℓZ ,

correlation lengths and the radial, kr, and poloidal, kZ , wave
numbers. Operationally, in order to constrain the fit (12), we
fix the product k ℓZ Z , which is determined from the two-time,
single-point correlation function of the intensity field (see
section 2.4 and appendix A of [28]). To obtain correct values
of the spatial correlation parameters of the true density field,
one must take account of the finite spatial resolution of the
BES system, which is quantified in terms of the point-spread
functions (PSFs) of its detector channels. How to do this
systematically is worked out in [28]; here ℓr, ℓZ , kr, and kZ are
all corrected for PSF effects using this technique.

Physically, we would like to work with the correlation
function in terms of point separations in the plane (x, y)
perpendicular to the mean magnetic field, where x is the
coordinate perpendicular to the flux surface (so, in the
outboard midplane of the tokamak, the same as the radial

Figure 2. Snapshots of the raw (but 2D-spline-interpolated) BES fluctuating-intensity signal d á ñI Ii i from shot #28155 at: (a)
=t 0.1409345 s, (b) =t 0.1410565 s, (c) =t 0.3696070 s, (d) =t 0.3692290 s. Times (a) and (b) occur during the BLM time period

(significant flow shear) and times (c) and (d) occur during the DLM time period (no flow shear). The correlation functions of these two cases
are given in figure 3, which include these snapshots in the temporal average.

Figure 3. Spatial two-point correlation function (13) of the fluctuating density field for (a) the case before the locked mode (BLM, with flow
shear) and (b) the case during the locked mode (DLM, no flow shear), both described in section 2.2. Table 2 shows the parameters of these
correlation functions calculated by fitting (12) to the spatial correlation function (11), correcting for PSF effects, and transforming into the (x,
y) coordinates perpendicular to the magnetic field. These correlation functions should be comparaed to the correlation functions of the
numerically simulated turbulence in figure 8.
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Which of  these has flow shear?

Real BES snapshots from MAST:



Does Turbulence Know?

considering the relevant ranges of values of Dr and DZ and
using the following fitting function
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Turbulence Knows, But Does it Care?

considering the relevant ranges of values of Dr and DZ and
using the following fitting function

( ) ( )

[ ] ( )

D D = + - -
D

+
D

´ D + D

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥C r Z p p

r

ℓ

Z

ℓ

k r k Z

, 1 exp

cos . 12
r Z

r Z

2

2

2

2

The parameter p is used to account for global modes [11], as
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Tilt angle:

Extracting these from BES data
is a lot of  work. 
Michael Fox developed quite
a sophisticated system for this:
it is described in exhaustive detail
in Fox et al. 2017, PPCF 59, 044008 



MAST GK Simulations: Shear is a Stability Parameter

F. van Wyk et al. 2016, JPP 82, 905820609

Experimental value of  heat flux

Experimental-uncertainty range for gradients

Experiment is close to threshold,
flux changes very rapidly with 
equilibrium gradients,
one must simulate a wide range



MAST GK Simulations: Shear is a Stability Parameter
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Experimental value of  heat flux

Experimental-uncertainty range for gradients

(a) (b)

Figure 6: (a) Ion heat flux Qi/QgB as a function of T for several values of �E . (b) Qi/QgB as a

function of �E for several values of T .

also identify several simulations that represent the marginally unstable cases in our parameter
scan: (T , �E) = (4.4, 0.14), (4.8, 0.16), (5.1, 0.18). We will consider these parameter values
section 3.2, when studying the conditions necessary to reach a saturated turbulent state.
Furthermore, we have a number of individual simulations that match the value of Qexp

i
/QgB.

A list of these is given in table 2. We will investigate these simulations further when we
make more detailed comparisons with the experiment, in section 4.

Figure 6(a) shows the values of Qi/QgB from figure 5(a) for several values of �E as a
function of T , whereas figure 6(b) shows Qi/QgB as a function of �E for several values
of T . We see that an O(1) change in T gives rise to an O(10) change in Qi/QgB, and
even more dramatically for changes in �E, which requires only an O(0.1) change to cause
O(10) changes in the ion heat flux. An important conclusion from this figure is that the
presence of flow shear does not significantly affect the stiffness of the transport, i.e., the
rate of increase of Qi/QgB with respect to T , but only changes the threshold value of T

above which turbulence is present. This increase in critical ITG without a change in the
stiffness of Qi/QgB with respect to T has been observed in numerical simulations of simplified
ITG-unstable plasmas in the presence of flow shear [36, 9]. It is also in agreement with
experimental [37, 38] and numerical [39] findings in the outer core of the JET experiment,
which also showed that ion heat transport’s stiffness is not affected by an increase in �E,
whereas the critical ITG threshold does increase with �E.

3.2 Subcritical turbulence

We have found that in all our simulations with �E > 0, small amplitude initial perturbations
decayed (i.e. the system was linearly stable) and a finite initial perturbation was always
required in order to ignite turbulence and reach a saturated turbulent state. Turbulence in
MAST in the equilibrium configuration that we study here belongs to the class of subcritical
systems [40, 12, 41, 13], where linear modes are formally stable, but may be transiently
amplified by a given factor over a given time. If the transient amplification is sufficient for
nonlinear interactions to become significant before the modes decay, then a turbulent state

13

Experiment is close to threshold,
flux changes very rapidly with 
equilibrium gradients,
one must simulate a wide range
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All cases with flow shear
are formally linearly stable.
Finite initial perturbation
needed for a non-zero 
nonlinear state to be achieved.
Turbulence is subcritical. 

In the linear approximation,
perturbations grow transiently.
They eventually decay because

flow shear pushes     to large values:
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Structures Live Forever 

(a)

(b)

Figure 16: Density-fluctuation field �ni/ni as a function of (a) x and t (taking the maximum in the

y direction) and (b) y and t (taking the maximum in the x direction) for a marginally unstable case

with (T , �E) = (5.1, 0.18), which contains only one coherent structure. The structure is advected

both radially and poloidally. The GS2 domain is periodic in x and y and so this is the same structure

throughout the entire time period shown. The dashed line in (a) indicates x = vxt, and in (b) it

indicates y / �Evxt, showing that the poloidal advection is due to the flow associated with the

shear �E .

plitude stays constant as we approach the threshold. This is because there is a critical value
required in order to sustain a saturated nonlinear state – indeex, if the amplitude dropped
below a certain value in a subcritical system, all perturbations would decay. However, even
as the fluctuation amplitude stays constant, the heat flux decreases as the threshold is ap-
proached. The system can satisfy the requirement of finite amplitude while simultaneously
allowing the heat flux to decrease through a reduction of the volume taken up by finite am-
plitude turbulence. As we demonstrate in the next section, this is achieved via a reduction
in the number of coherent structures.

3.3.4 Structure counting

We quantify the changes in volume taken up by the finite-amplitude structures by measuring
the typical number of these structures in our simulations as a function of the distance from
threshold. We follow the “structure-counting” methods first described in [14], which involve
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In the structure-dominated state,
equilibrium shear dominates
over zonal shear;
in the more conventional state
away from threshold,
zonal flows provide
dominant shear.

Experiment is in between.



Smoking Gun: Symmetry Breaking

considering the relevant ranges of values of Dr and DZ and
using the following fitting function
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The parameter p is used to account for global modes [11], as
well as for fluctuations in the neutral beam [37]. As we have
selected times during which there is no MHD activity (see
section 2.1), the value of p should be small. Indeed, in all
measured cases it is at most a few percent, therefore also
indicating that neutral-beam fluctuations do not affect the
measurements.

The fit (12) allows us to extract the spatial correlation
parameters of the turbulence: the radial, ℓr, and poloidal, ℓZ ,

correlation lengths and the radial, kr, and poloidal, kZ , wave
numbers. Operationally, in order to constrain the fit (12), we
fix the product k ℓZ Z , which is determined from the two-time,
single-point correlation function of the intensity field (see
section 2.4 and appendix A of [28]). To obtain correct values
of the spatial correlation parameters of the true density field,
one must take account of the finite spatial resolution of the
BES system, which is quantified in terms of the point-spread
functions (PSFs) of its detector channels. How to do this
systematically is worked out in [28]; here ℓr, ℓZ , kr, and kZ are
all corrected for PSF effects using this technique.

Physically, we would like to work with the correlation
function in terms of point separations in the plane (x, y)
perpendicular to the mean magnetic field, where x is the
coordinate perpendicular to the flux surface (so, in the
outboard midplane of the tokamak, the same as the radial

Figure 2. Snapshots of the raw (but 2D-spline-interpolated) BES fluctuating-intensity signal d á ñI Ii i from shot #28155 at: (a)
=t 0.1409345 s, (b) =t 0.1410565 s, (c) =t 0.3696070 s, (d) =t 0.3692290 s. Times (a) and (b) occur during the BLM time period

(significant flow shear) and times (c) and (d) occur during the DLM time period (no flow shear). The correlation functions of these two cases
are given in figure 3, which include these snapshots in the temporal average.

Figure 3. Spatial two-point correlation function (13) of the fluctuating density field for (a) the case before the locked mode (BLM, with flow
shear) and (b) the case during the locked mode (DLM, no flow shear), both described in section 2.2. Table 2 shows the parameters of these
correlation functions calculated by fitting (12) to the spatial correlation function (11), correcting for PSF effects, and transforming into the (x,
y) coordinates perpendicular to the magnetic field. These correlation functions should be comparaed to the correlation functions of the
numerically simulated turbulence in figure 8.
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Figure 3. Spatial two-point correlation function (13) of the fluctuating density field for (a) the case before the locked mode (BLM, with flow
shear) and (b) the case during the locked mode (DLM, no flow shear), both described in section 2.2. Table 2 shows the parameters of these
correlation functions calculated by fitting (12) to the spatial correlation function (11), correcting for PSF effects, and transforming into the (x,
y) coordinates perpendicular to the magnetic field. These correlation functions should be comparaed to the correlation functions of the
numerically simulated turbulence in figure 8.
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stated at the beginning of section 3.1). This is illustrated in
figure 10, where we show the y-integrated perturbed density
field for the zero-flow-shear run GKa5 with and without this
filter.

Experimentally, the high-pass frequency filter may be
difficult to abandon (see appendix A.1), however, the zonal
shear can be detected indirectly via correlation functions of
the fluctuating density field19: if those are calculated over a
spatial domain that is smaller (radially) than the wave length
of the zonal flow, they will be tilted by the same mechanism
as in the case of a mean flow shear. This is illustrated in
figure 11, which shows correlation functions for the zero-
flow-shear run GKa5 restricted to regions of positive and
negative zonal density, as marked in figure 10—as is obvious
from the tilts of the correlation functions, these regions turn

out also to be regions of positive and negative zonal shear (in
this context, we should perhaps recall the presence of tilted
instantaneous structures in the zero-flow-shear DLM case,
noted in section 2.3.1). The overall correlation function in
figure 8(d) is an average over several such regions—the
opposite tilts average out and the overall radial-reflection
symmetry is preserved.

Since turbulence with mean flow shear will also develop
zonal flows, a similar analysis applied to it will show a certain
spread in the tilt angle of the correlation function depending
on whether the zonal shear locally subtracts from or adds to
the mean flow shear. This can matter if the mean flow shear is
sufficiently weak.

3.2. Skewness versus flow shear

The numerical scan in flow shear also reveals that the sym-
metry of the distribution of the fluctuating density field is

Figure 8. Directly calculated spatial correlation functions of the fluctuating density field for 4 of the runs documented in table 4, with, from
(a) to (d), value of the flow shear decreasing from the experimental (EGK) value to ĝ = 0E . The spatial domain of the simulation is regularly
gridded, therefore multiple values of the correlation function (11) (with dni instead of dIi, i being the grid point) occur for each ( )D Dr Z, pair;
these values are then averaged to produce the spatial correlation function that is plotted (it is also averaged over time, typically several
hundred ms, i.e., tens of correlation times). These correlation functions are to be compared with experimental correlation functions with and
without flow shear in figure 3. The correlation parameters for the fitting function (13), approximating the true correlation functions plotted
here, are given in table 4. The red contours in these plots correspond to the fitting function (13) with these parameters, showing the quality of
the fit (and thus supporting its use for experimental data; see [28] for further discussion).

19 Since zonal flows advect the fluctuating density field, it is also possible to
detect them by tracking the movement of density contours in time [45].
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Smoking Gun: Symmetry Breaking

broken by the flow shear: the skewness of the distribution
increases with the flow shear, as documented in table 4; the
distributions for a run with no flow shear (for which in
accordance with the theoreical expectations outlined in
section 1, there is no skew) and runs with two values of the
flow shear, one at the nonlinear stability threshold and one
just off it, are shown in in figure 12. The skew in the dis-
tribution for the Marginal case in figure 12(c) is extremely
pronounced, much more so than anything that we have
observed experimentally, but the distribution for the case that
is only slightly offset from the stability threshold, shown in
figure 12(b), is very similar qualitatively to the experimental
BLM case in figure 5(a)20. Generally speaking, in many runs
with various values of ĝE and a LTi, we only find distributions
with a pronounced tail on the overdensity side in cases that
are very close to the threshold (and in all cases that were
simulated, we do find asymmetry in favour of over-, rather
than underdensities), while the majority of the skewed dis-
tributions are similar to that in figure 12(b). This gives us a
degree of confidence that the skewness that we have found in
the experimentally measured distributions in section 2.4 is
indeed due to flow shear. It is likely that the fact that this

skewness is not very large (and indeed not always measur-
able) is due to the rather sensitive dependence of it on the
distance to the threshold: note the precipitous decline in
skewness from the Marginal run to run GKa1, even though
the difference in the values of ĝE for these two cases
(ĝ = 0.16E and 0.14, respectively) is small and experimen-
tally would be within measurement errors on the velocity
profile (see further discussion in section 3.3).

3.2.1. Physics of skewed distributions. Besides encouraging
the physical interpretation of the experimental evidence in
terms of symmetry breaking associated with flow shear,
numerical simulations give us a crucial insight as to how,
dynamically, this symmetry breaking occurs. In [18], for
which these simulations were originally carried out, it
was shown that the transition to turbulence in these flow-
sheared MAST configurations occurs via emergence and
accumulation (as equilibrium parameters move deeper into
the unstable regime) of long-lived, intense coherent
structures, which occupy a small fraction of the volume.
This is because turbulence in these equilibria is subcritical—
while the system is formally linearly stable, perturbations do
grow transiently and, for finite perturbations, this can lead to
non-zero nonlinearly saturated turbulent fluctuation levels and
heat fluxes. Since finite amplitudes are required for such a
state to persist, the only way for the system to have small
overall heat fluxes as the threshold is approached is by
restricting finite amplitudes to a small fraction of the volume,
hence the spatially sparse, but intense structures. Clearly, in
terms of the probability distribution of the amplitudes, the
presence of such structures and the fact that they give rise to a
non-zero overall heat flux, implies skewed distributions.
Away from the threshold, the structures become more

Figure 12. Distribution of the fluctuating density field dn, normalised by its own standard deviation, for (a) GKa5 (no flow shear), (b) GKa1
(with flow shear, close but not at the nonlinear stability threshold), (c) Marginal (at the threshold) runs (see table 4). The black-dashed line in
each case gives the unit normal distribution. These distributions should be compared with experimental ones with and without flow shear in
figure 5.

20 In section 2.4, we considered the distribution of the fluctuating intensity
field measured by the BES, while here we are considering the distribution of
the fluctuating density field generated by the gyrokinetic simulations. There is
a certain difference between the two, due to the finite-size PSFs of the BES
diagnostic [46]. For a closer comparison with experiment, synthetic BES data
can be generated from the gyrokinetic simulations by applying the PSFs of
the real diagnostic [28]. We will not do this here as we are, in any event, not
in a position to make a detailed comparison between simulated and BES-
measured turbulent density fields in the same experimental configurations,
but are rather looking for qualitative trends. The PSF effects on the
distribution functions are considered in the appendix, where we generate
synthetic BES data and show that PSFs do not significantly alter the
skewness of the distribution.
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also allows the fluctuation field’s one-point distribution function
to become skewed. 
Simulations show that it indeed does so close to threshold.

This is not hard to measure experimentally!
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measured turbulent density fields in the same experimental configurations,
but are rather looking for qualitative trends. The PSF effects on the
distribution functions are considered in the appendix, where we generate
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This has normalised flow shear (9) that is~40% smaller than
that in the BLM case (with its other equilibrium parameters
not differing in any particularly remarkable way from the
BLM ones).

The correlation function for the IFS case is shown in
figure 4. Its tilt is in between that of the BLM and DLM cases
and its tlife is shorter than for the stronger-sheared BLM case
(see table 2). Clearly, two points a parameter scan do not
make, but this is the best one can do with current data. The
salient message is that the transition from stronger flow shear
(BLM) to no flow shear (DLM) is gradual in parameter space,
with the tilt angle passing through a range of values—and a
more comprehensive parameter study ought to be on
experimentalists’ agenda. The most interesting outcome from
such a study would be the dependence of tlife on gE, telling us
how the dynamical properties of turbulence change with shear
(see section 3.3.1).

2.4. Distribution of fluctuation field

In section 1.1, we argued that the breaking of the radial-
reflection symmetry by the flow shear can lead to the breaking
of the symmetry (evenness) of the distribution of the fluctu-
ating density and, therefore, BES-measured intensity field.
Here we show that this is indeed the case.

We consider the fluctuating part ( )dI ti of the intensity
field (10) and, for each detector channel i, normalise it by its
own standard deviation
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where we have subtracted the mean square amplitude dá ñI inoise,
2

of the fluctuating part of the photon noise signal (determined
from the signal at each channel during the calibration of the
instrument [11]). The angle brackets signify averages over time.

The normalisation to dIi
std is required in order to account for a

degree of variation of this quantity across the BES subarray used
for our analysis. The total standard deviation (total rms fluc-
tuation amplitude) over all N=20 channels in the subarray is
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This quantity is proportional to the total rms fluctuating density
field dn n, whose value can be reconstructed from it by cor-
recting for PSF effects (see section 7.1 of [28]) and is given in
table 2. The distribution of the normalised fluctuating intensities
d dI Ii i

std can be affected by several different known exper-
imental effects, including MHD activity, radiation spikes, and
PSF effects. A discussion of these effects and how they have
been accounted for in our present analysis is given in the
appendix.

2.4.1. Symmetry breaking. In figure 5, we show the
probability distribution of the normalised fluctuating
intensities d dI Ii i

std for the BLM and DLM cases. In the
case without flow shear (DLM), the distribution is even with
respect to positive and negative dI (and very nearly normal).
In contrast, the case with shear (BLM) exhibits a relatively
small, but measurable preponderance of positive dI , i.e.,
overdensities are statistically somewhat more common than
underdensities. This can be quantified as a positive value of
the skewness of the distribution14
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Figure 5.Distribution of the fluctuating intensity field for (a) the case before the locked mode (BLM, with flow shear) and (b) the case during
the locked mode (DLM, no flow shear), both described in section 2.2. For each detector channel, dIi is normalised by its own root mean
square (standard deviation) value (15). The black-dashed line in each case gives the unit normal distribution. The distribution function and its
skewness for the DLM case (b) were calculated from 2 (rather than 5, as in all other cases) sets of 4 poloidal BES channels, located at
R = 1.33 m and R = 1.35 m, where the toroidal rotation profile is completely flat, as seen in figure 1(d).

14 The fluctuating part of the photon noise is Gaussian distributed [29, 39]
and so does not affect the third moment ofdI .
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Restoration of  Symmetry

exception to this rule, as expected theoretically, being subject
to the exact symmetry (1): namely, at zero flow shear, both
the tilt and the skew are essentially zero regardless of how
marginal, or otherwise, the system is.

4. Discussion

To summarise, we started with a premise that, as the presence
of the flow shear appears to be quite strongly correlated with

larger temperature gradients both in MAST [9] and in num-
erical simulations [10, 18], the effect of the shear on the local
structure of plasma turbulence must be detectable. Theoreti-
cally, we argued (in section 1) that flow shear would break the
reflection symmetry (1) [12, 13] and that statistically this
symmetry breaking would be actualised in the form of skewed
distributions (section 1.1) and tilted correlation functions
(section 1.2) of the fluctuating density field. We did then find
both of these signatures of symmetry breaking experimentally
(sections 2.4.1 and 2.3.3, respectively), at least as a proof of

Figure 15. (a) Tilt angle of the correlation function and (b) skewness of the distribution of the fluctuating density field versus flow shear ĝE
and ITG a LTi in a range of values of these parameters around the nonlinear stability threshold. The tilt and the skewness are replotted in (c)
and (d), respectively, versus the gyro-Bohm-normalised ion heat flux, with data points coloured according to the value of ĝE . These plots
contain data for ˆ [ ]g Î 0, 0.19E and ITG [ ]Îa L 4.3, 8Ti , covering the entire database of the runs carried out in [18]. In (d), inverted triangles
mark the cases where skewness is negative.
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Far from the threshold, symmetry is restored (shear no longer matters).
Tilt is more robust than skewness, presumably because it is a passive feature.
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and ITG a LTi in a range of values of these parameters around the nonlinear stability threshold. The tilt and the skewness are replotted in (c)
and (d), respectively, versus the gyro-Bohm-normalised ion heat flux, with data points coloured according to the value of ĝE . These plots
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contain data for ˆ [ ]g Î 0, 0.19E and ITG [ ]Îa L 4.3, 8Ti , covering the entire database of the runs carried out in [18]. In (d), inverted triangles
mark the cases where skewness is negative.

20

Plasma Phys. Control. Fusion 59 (2017) 034002 M F J Fox et al

M. F. J. Fox et al. 2017, PPCF 59, 034002

Far from the threshold, symmetry is restored (shear no longer matters).
Tilt is more robust than skewness, presumably because it is a passive feature.

is a good measure of  distance to threshold (order parameter).
Statistical properties depend more sensitively on it

than on individual values of  the equilibrium gradients.



Distance to Threshold Is the Relevant Parameter
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Far from the threshold, symmetry is restored (shear no longer matters).
Tilt is more robust than skewness, presumably because it is a passive feature.

is a good measure of  distance to threshold (order parameter).
Statistical properties depend more sensitively on it

than on individual values of  the equilibrium gradients.

Figure 9. (a) Life time of perturbations, defined by (14), ∣ ∣t g= Qtan Elife , and normalised by a v ith , versus flow shear ĝE for a number of
values of the ion-temperature gradient a LTi (distinguished by different shapes of the data points); the data points are coloured according to
the value of the gyro-Bohm-normalised heat flux Q Qi gB (see discussion in section 3.3). (b) Same, but here tlife is plotted versus Q Qi gB with
data points coloured according to the value of a LTi (this plot includes data from the full set of simulations carried out in [18] and so covers a
larger number of values of ITG than (a)); the vertical dashed line indicates the experimental value of Q Qi gB for the EGK case (table 1).

Figure 10. Perturbed density field from run GKa5 (ĝ = 0E ) integrated over y shown versus x and time (a) without subtracting moving time
average and (b) with moving time average subtracted (as for all fluctuating density fields used in section 3). The presence of a zonal density
component is manifest. The red boxes show regions for which conditional correlation functions shown in figure 11 and discussed in
section 3.1.2 were calculated.

Figure 11. Same correlation function as figure 8(d), for run GKa5 (ĝ = 0E ), but calculated for two spatial subdomains: (a) with positive zonal
density and (b) with negative zonal density, as discussed in section 3.1.2.
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Far from the threshold, symmetry is restored (shear no longer matters).
Tilt is more robust than skewness, presumably because it is a passive feature.
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than on individual values of  the equilibrium gradients.

(a) (b)

(c) (d)

Figure 27: Correlation parameters calculated for raw GS2 density fluctuations for the entire param-

eter scan as a function of Qi/QgB: (a) radial correlation length lGS2

R
(b) poloidal correlation length

lGS2

Z
keeping ky fixed to ky = 2⇡/lZ (c) correlation time ⌧GS2

c , and (d) RMS density fluctuations

(�ni/ni)GS2
rms , where the dashed line indicates the scaling (17).

threshold) and found that the RMS value did not change very much, showing that for the
cases near the threshold the RMS value is dominated by the low-amplitude density fluctua-
tions.

Finally, we see that the parallel correlation length l
GS2

k [figure 28(c)] decreases as the
system is taken away from the turbulence threshold. Estimates of lk for strongly driven
ITG turbulence [56] suggested that lk should be proportional to the connection length, i.e.,
lk ⇠ ⇡qR. This estimate is indicated by the dashed line in figure 28(c) and shows good
agreement with the data.

We have shown cases for which �E = 0 (red) and �E > 0 (black) in figures 27 and 28 to
highlight two important features of sheared versus unsheared turbulence previously discussed
in section 3.3. First, close to the turbulence threshold, the cases with �E = 0 represent a
different regime of turbulence to those cases with �E > 0. In particular, l

GS2

Z
shown in

figure 27(b) [as well as figures 28(a) and (b)], shows an increasing trend for cases with
�E = 0: from ⇠ 10 cm near the turbulence threshold to ⇠ 15 cm far away from it, whereas
cases with �E > 0 decrease from ⇠ 23 cm near marginality to ⇠ 15 cm far away from it.
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(a) (b)

(c) (d)

Figure 28: Correlation parameters calculated for raw GS2 density fluctuations for the entire pa-

rameter scan as a function of Qi/QgB: (a) poloidal correlation length lGS2

Z,free
with ky as a free fitting

parameter, and (b) poloidal wavenumber kGS2

Z,free
, (c) parallel correlation length lGS2

k , and (d) parallel

wavenumber kGS2

k . The dashed line in (c) indicates a line of lk ⇠ qR (see main text).

This represents a different dependence on Qi/QgB as well as showing a significantly lower
value of lGS2

Z
at experimentally relevant Qi/QgB (= 2 ± 1). Figure 27(c) shows that ⌧

GS2

c

predicted by �E = 0 simulations stays roughly constant over a large range of Qi/QgB whereas
for �E > 0 simulations, ⌧GS2

c
diminishes rapidly for small Qi/QgB. Secondly, we see that far

from the threshold, the �E = 0 and �E > 0 cases for all correlation parameters show the
same dependence on Qi/QgB. This shows that far from the threshold there is little difference
between sheared and unsheared (by a background flow) turbulence.

The above two observations highlight an important finding of this work: close to the
turbulence threshold the background flow shear has a significant effect on the turbulence
leading to reduced heat transport, whereas far from the threshold the turbulence is much
like conventional ITG-driven turbulence in the absence of flow shear. This result is consistent
with the results in section 3.3 and has been studied in related work [57], which attempted
to argue a similar case in terms of symmetry breaking of fluctuation spectra close to the
threshold in the presence of flow shear. Far from the threshold, however, the symmetry is
effectively restored, and resembles turbulence in the absence of flow shear.
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Meanwhile, at Electron Scales…

electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.
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Familiar ETG “streamery” state…

Standard numerical set up (with GS2):
electrostatic GK,
Boltzmann ions,
collisions on,
MAST-relevant local equilibrium
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Let us outline a simple explanation of these results,
which we will then follow up with a series of numerical
experiments designed to test its plausibility.

Let us split the gyrokinetic equation (6) explicitly into
equations governing the evolution of the nonzonal and zonal
components of the distribution function and the associated
electrostatic potential (compare [18]),

f f f= + = + ( )h h h , , 18NZ Z NZ Z

where the subscripts NZ, Z denote nonzonal ( ¹k 0y ) and
zonal (ky = 0) modes, respectively:
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where the overline denotes spatial averaging over y, i.e., the
ky = 0 component. Equation (20) is the y average of the
gyrokinetic equation (6); then (19) is the result of subtracting
(20) from (6).

We conjecture that the dominant balance governing the
saturated state of the nonzonal modes is between the zonal–
nonzonal interaction terms (I) and the the linear drive (energy-
injection) term (II) in (19)13. We estimate these terms as

f~ á ñ � ~( ) · ( )h
c
B

k k hvI , 21E y,NZ Z NZ Z Z

and

f~ á ñ � ~( ) · ( )F
c
B

k
F
L

vII , 22E y
T

,NZ NZ

where kZ is the typical zonal wavenumber and ky the typical
nonzonal wavenumber (we have used f~ ( )v c B k ;Ex y see
(10)). The second zonal–nonzonal interaction term,
á ñ �· hvE,Z NZ, is of the same order as (21) if we assume that

f
~ ( )h

F
e
T

23

for both zonal and nonzonal modes. Balancing (21) and (22),

Figure 2. Evolution in time of (a) the turbulent electron heat flux in electron gyroBohm units, and (b) the square of the zonal velocity,
f( )kZ Z

2, for two simulations with electron collisionality n n= 0.2 nom, ETG =a L 3.3T (green: small-box simulation; yellow: large-box
simulation; see appendix C.2 for details).

13 We are thus treating the collision term in the nonzonal equation as
subdominant, or at least as unimportant to this aspect of the dynamics.
Numerically we find that it cannot be neglected as it regularises the fine
velocity-space structure arising due to the phase-mixing of hNZ [19]. The
parallel streaming and magnetic-drift terms likely play a part in determining
the spatial structure of the turbulence [19–21], but we shall see that we do not
need to determine ky, kZ or &k . In [18], a split between nonzonal and zonal
components is performed for integrated entropy balance equations (equations
(67) and (68) of [18]) in which these other terms do not appear. One could
base a similar argument to the one presented here on these equations.
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What Happens If  You Wait Long Enough

electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.
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Let us outline a simple explanation of these results,
which we will then follow up with a series of numerical
experiments designed to test its plausibility.

Let us split the gyrokinetic equation (6) explicitly into
equations governing the evolution of the nonzonal and zonal
components of the distribution function and the associated
electrostatic potential (compare [18]),

f f f= + = + ( )h h h , , 18NZ Z NZ Z

where the subscripts NZ, Z denote nonzonal ( ¹k 0y ) and
zonal (ky = 0) modes, respectively:
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where the overline denotes spatial averaging over y, i.e., the
ky = 0 component. Equation (20) is the y average of the
gyrokinetic equation (6); then (19) is the result of subtracting
(20) from (6).

We conjecture that the dominant balance governing the
saturated state of the nonzonal modes is between the zonal–
nonzonal interaction terms (I) and the the linear drive (energy-
injection) term (II) in (19)13. We estimate these terms as

f~ á ñ � ~( ) · ( )h
c
B

k k hvI , 21E y,NZ Z NZ Z Z

and

f~ á ñ � ~( ) · ( )F
c
B

k
F
L

vII , 22E y
T

,NZ NZ

where kZ is the typical zonal wavenumber and ky the typical
nonzonal wavenumber (we have used f~ ( )v c B k ;Ex y see
(10)). The second zonal–nonzonal interaction term,
á ñ �· hvE,Z NZ, is of the same order as (21) if we assume that

f
~ ( )h

F
e
T

23

for both zonal and nonzonal modes. Balancing (21) and (22),

Figure 2. Evolution in time of (a) the turbulent electron heat flux in electron gyroBohm units, and (b) the square of the zonal velocity,
f( )kZ Z

2, for two simulations with electron collisionality n n= 0.2 nom, ETG =a L 3.3T (green: small-box simulation; yellow: large-box
simulation; see appendix C.2 for details).

13 We are thus treating the collision term in the nonzonal equation as
subdominant, or at least as unimportant to this aspect of the dynamics.
Numerically we find that it cannot be neglected as it regularises the fine
velocity-space structure arising due to the phase-mixing of hNZ [19]. The
parallel streaming and magnetic-drift terms likely play a part in determining
the spatial structure of the turbulence [19–21], but we shall see that we do not
need to determine ky, kZ or &k . In [18], a split between nonzonal and zonal
components is performed for integrated entropy balance equations (equations
(67) and (68) of [18]) in which these other terms do not appear. One could
base a similar argument to the one presented here on these equations.
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What Happens If  You Wait Long Enough

electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.
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Let us outline a simple explanation of these results,
which we will then follow up with a series of numerical
experiments designed to test its plausibility.

Let us split the gyrokinetic equation (6) explicitly into
equations governing the evolution of the nonzonal and zonal
components of the distribution function and the associated
electrostatic potential (compare [18]),

f f f= + = + ( )h h h , , 18NZ Z NZ Z

where the subscripts NZ, Z denote nonzonal ( ¹k 0y ) and
zonal (ky = 0) modes, respectively:
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where the overline denotes spatial averaging over y, i.e., the
ky = 0 component. Equation (20) is the y average of the
gyrokinetic equation (6); then (19) is the result of subtracting
(20) from (6).

We conjecture that the dominant balance governing the
saturated state of the nonzonal modes is between the zonal–
nonzonal interaction terms (I) and the the linear drive (energy-
injection) term (II) in (19)13. We estimate these terms as
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and
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where kZ is the typical zonal wavenumber and ky the typical
nonzonal wavenumber (we have used f~ ( )v c B k ;Ex y see
(10)). The second zonal–nonzonal interaction term,
á ñ �· hvE,Z NZ, is of the same order as (21) if we assume that

f
~ ( )h
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for both zonal and nonzonal modes. Balancing (21) and (22),

Figure 2. Evolution in time of (a) the turbulent electron heat flux in electron gyroBohm units, and (b) the square of the zonal velocity,
f( )kZ Z

2, for two simulations with electron collisionality n n= 0.2 nom, ETG =a L 3.3T (green: small-box simulation; yellow: large-box
simulation; see appendix C.2 for details).

13 We are thus treating the collision term in the nonzonal equation as
subdominant, or at least as unimportant to this aspect of the dynamics.
Numerically we find that it cannot be neglected as it regularises the fine
velocity-space structure arising due to the phase-mixing of hNZ [19]. The
parallel streaming and magnetic-drift terms likely play a part in determining
the spatial structure of the turbulence [19–21], but we shall see that we do not
need to determine ky, kZ or &k . In [18], a split between nonzonal and zonal
components is performed for integrated entropy balance equations (equations
(67) and (68) of [18]) in which these other terms do not appear. One could
base a similar argument to the one presented here on these equations.
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electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.
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Zonal Flows Strike Again

electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.
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Let us outline a simple explanation of these results,
which we will then follow up with a series of numerical
experiments designed to test its plausibility.

Let us split the gyrokinetic equation (6) explicitly into
equations governing the evolution of the nonzonal and zonal
components of the distribution function and the associated
electrostatic potential (compare [18]),

f f f= + = + ( )h h h , , 18NZ Z NZ Z

where the subscripts NZ, Z denote nonzonal ( ¹k 0y ) and
zonal (ky = 0) modes, respectively:
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where the overline denotes spatial averaging over y, i.e., the
ky = 0 component. Equation (20) is the y average of the
gyrokinetic equation (6); then (19) is the result of subtracting
(20) from (6).

We conjecture that the dominant balance governing the
saturated state of the nonzonal modes is between the zonal–
nonzonal interaction terms (I) and the the linear drive (energy-
injection) term (II) in (19)13. We estimate these terms as
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where kZ is the typical zonal wavenumber and ky the typical
nonzonal wavenumber (we have used f~ ( )v c B k ;Ex y see
(10)). The second zonal–nonzonal interaction term,
á ñ �· hvE,Z NZ, is of the same order as (21) if we assume that
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for both zonal and nonzonal modes. Balancing (21) and (22),

Figure 2. Evolution in time of (a) the turbulent electron heat flux in electron gyroBohm units, and (b) the square of the zonal velocity,
f( )kZ Z

2, for two simulations with electron collisionality n n= 0.2 nom, ETG =a L 3.3T (green: small-box simulation; yellow: large-box
simulation; see appendix C.2 for details).

13 We are thus treating the collision term in the nonzonal equation as
subdominant, or at least as unimportant to this aspect of the dynamics.
Numerically we find that it cannot be neglected as it regularises the fine
velocity-space structure arising due to the phase-mixing of hNZ [19]. The
parallel streaming and magnetic-drift terms likely play a part in determining
the spatial structure of the turbulence [19–21], but we shall see that we do not
need to determine ky, kZ or &k . In [18], a split between nonzonal and zonal
components is performed for integrated entropy balance equations (equations
(67) and (68) of [18]) in which these other terms do not appear. One could
base a similar argument to the one presented here on these equations.
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Let us outline a simple explanation of these results,
which we will then follow up with a series of numerical
experiments designed to test its plausibility.

Let us split the gyrokinetic equation (6) explicitly into
equations governing the evolution of the nonzonal and zonal
components of the distribution function and the associated
electrostatic potential (compare [18]),

f f f= + = + ( )h h h , , 18NZ Z NZ Z

where the subscripts NZ, Z denote nonzonal ( ¹k 0y ) and
zonal (ky = 0) modes, respectively:
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where the overline denotes spatial averaging over y, i.e., the
ky = 0 component. Equation (20) is the y average of the
gyrokinetic equation (6); then (19) is the result of subtracting
(20) from (6).

We conjecture that the dominant balance governing the
saturated state of the nonzonal modes is between the zonal–
nonzonal interaction terms (I) and the the linear drive (energy-
injection) term (II) in (19)13. We estimate these terms as
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(10)). The second zonal–nonzonal interaction term,
á ñ �· hvE,Z NZ, is of the same order as (21) if we assume that
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for both zonal and nonzonal modes. Balancing (21) and (22),

Figure 2. Evolution in time of (a) the turbulent electron heat flux in electron gyroBohm units, and (b) the square of the zonal velocity,
f( )kZ Z

2, for two simulations with electron collisionality n n= 0.2 nom, ETG =a L 3.3T (green: small-box simulation; yellow: large-box
simulation; see appendix C.2 for details).

13 We are thus treating the collision term in the nonzonal equation as
subdominant, or at least as unimportant to this aspect of the dynamics.
Numerically we find that it cannot be neglected as it regularises the fine
velocity-space structure arising due to the phase-mixing of hNZ [19]. The
parallel streaming and magnetic-drift terms likely play a part in determining
the spatial structure of the turbulence [19–21], but we shall see that we do not
need to determine ky, kZ or &k . In [18], a split between nonzonal and zonal
components is performed for integrated entropy balance equations (equations
(67) and (68) of [18]) in which these other terms do not appear. One could
base a similar argument to the one presented here on these equations.
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electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.

2

Plasma Phys. Control. Fusion 59 (2017) 055002 G J Colyer et al

Mean square zonal flow

True saturated state

“Quasi-saturated” state



Zonal Flows Strike Again
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electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
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themselves contribute to the heat flux) are small but slowly
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do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
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f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the
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Let us outline a simple explanation of these results,
which we will then follow up with a series of numerical
experiments designed to test its plausibility.

Let us split the gyrokinetic equation (6) explicitly into
equations governing the evolution of the nonzonal and zonal
components of the distribution function and the associated
electrostatic potential (compare [18]),

f f f= + = + ( )h h h , , 18NZ Z NZ Z

where the subscripts NZ, Z denote nonzonal ( ¹k 0y ) and
zonal (ky = 0) modes, respectively:
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where the overline denotes spatial averaging over y, i.e., the
ky = 0 component. Equation (20) is the y average of the
gyrokinetic equation (6); then (19) is the result of subtracting
(20) from (6).

We conjecture that the dominant balance governing the
saturated state of the nonzonal modes is between the zonal–
nonzonal interaction terms (I) and the the linear drive (energy-
injection) term (II) in (19)13. We estimate these terms as
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where kZ is the typical zonal wavenumber and ky the typical
nonzonal wavenumber (we have used f~ ( )v c B k ;Ex y see
(10)). The second zonal–nonzonal interaction term,
á ñ �· hvE,Z NZ, is of the same order as (21) if we assume that
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for both zonal and nonzonal modes. Balancing (21) and (22),

Figure 2. Evolution in time of (a) the turbulent electron heat flux in electron gyroBohm units, and (b) the square of the zonal velocity,
f( )kZ Z

2, for two simulations with electron collisionality n n= 0.2 nom, ETG =a L 3.3T (green: small-box simulation; yellow: large-box
simulation; see appendix C.2 for details).

13 We are thus treating the collision term in the nonzonal equation as
subdominant, or at least as unimportant to this aspect of the dynamics.
Numerically we find that it cannot be neglected as it regularises the fine
velocity-space structure arising due to the phase-mixing of hNZ [19]. The
parallel streaming and magnetic-drift terms likely play a part in determining
the spatial structure of the turbulence [19–21], but we shall see that we do not
need to determine ky, kZ or &k . In [18], a split between nonzonal and zonal
components is performed for integrated entropy balance equations (equations
(67) and (68) of [18]) in which these other terms do not appear. One could
base a similar argument to the one presented here on these equations.
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electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.
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electrostatic perturbations is a matter of considering as simple
a model as possible for a plasma where beta is low and
magnetic perturbations are relatively small. The neglect of the
ion-gyroradius-scale turbulence is justifiable on the grounds
that, in typical MAST plasmas, ion turbulence is considerably
suppressed by radial shear in the background flow, and ion
transport is close to the neoclassical level [6–9]. This is for-
tunate, as spanning both ion- and electron-gyroradius scales
requires prohibitively large computational resources. We
further limit ourselves here to a Boltzmann-ion model, at
electron scales, treating only the electrons kinetically. While
greatly simplified, the equations we solve (which are descri-
bed in more detail in section 2) reproduce the experimental
scaling of electron heat flux with collisionality.

The reference simulation parameters are based on
experiment, which is close to the threshold for the onset of
turbulence. In this region of parameter space, we find that the
saturated turbulent heat flux varies with collisionality in a
manner consistent with the experimental scaling. This scaling
is only revealed, however, if the simulation times are suffi-
ciently long to reach a true steady state, which requires them
to be much longer than the electron-collision time scale. At
earlier times, there is a transient ‘quasi-saturated’ state with
higher heat flux, in which the zonal modes (which do not
themselves contribute to the heat flux) are small but slowly
growing. When they have grown to a sufficient level, the
nonzonal modes and the heat flux are significantly sup-
pressed. Figure 1 illustrates these two regimes by showing the
electrostatic potential (which is proportional to the density
perturbation) in an outboard-midplane cross-section of a flux
tube in MAST both in the earlier quasi-saturated state and the
later long-time saturated state, based on one of the simulations
reported below. In the quasi-saturated state, the zonal modes
do not appear to play a special role, and radially extended
‘streamers’ can be seen, as is usually expected for ETG tur-
bulence [10, 11]. In contrast, in the long-time saturated
state, a strong zonal component comes to dominate, struc-
turing the turbulence into ‘vortex streets’ and dramatically
weakening radial transport. In this final saturated state,
the nonlinear drive of the zonal modes is balanced by their

weak collisional damping, dominated by electron–ion colli-
sions. Scans in collisionality reveal that the saturated heat flux
increases with increasing collisionality, in rough proportion-
ality: *nµQ QgB .

A brief outline of the rest of the paper is as follows. In
section 2, we describe the equations that are solved and the
simulation set-up. In section 3, we present our main results,
including the long-time evolution of the turbulence, the
dependence of the saturated heat flux on collisionality, and the
structure of the saturated turbulent state. We also sketch a
simple theoretical argument that explains the collisionality
scaling of the heat flux (section 3.2). In section 4, a summary of
our findings is given, our results are put in the context of some
earlier work, and a discussion is given of the apparent differ-
ences and possible similarities between the ETG and ITG tur-
bulent states in light of the conclusions of the present study.

2. Governing equations and numerical set-up

Our study is based on the MAST H-mode shot 8500, which
had 2 MW of NBI heating, and for which data are available
from the International Tokamak Profile Database [12]. This
shot was analysed by Field et al [6], and a linear gyrokinetic
study was performed by Roach et al [7]. In the present work,
we consider a single flux surface, for which the detailed
plasma parameters are given in appendix B (they are referred
to as ‘nominal’ parameters); these were kept fixed throughout
our study, except for varying collisionality and ETG where
indicated. In appendix C, we provide the technical details
about our numerical simulations: the coordinate system used,
numerical grids, resolution and boundary conditions.

2.1. Gyrokinetic equation

We use the GS2 continuum gyrokinetic code [3] to obtain the
perturbed distribution function and electrostatic field in local
flux-tube geometry. The electron distribution function is
written

d= + ( )f F f , 3

Figure 1. Non-dimensionalised electrostatic potential
*

f re T (where
*
r r= ae ) at the outboard midplane, for n n= 0.2 nom (here nnom is the

‘nominal’, i.e., experimental value of collisionality), =a L 3.3T : (a) quasi-saturated state at =t a v1200.3 te, (b) saturated state at
=t a v7835.8 te, for large-box simulations. See appendices B and C for the meaning of symbols.
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turned off, n = 0ei , leaving only the (momentum-conserving)
electron–electron collisions nee, the damping rates drop dra-
matically and scale as g n r~ kee x peZ

4 4 , as indeed expected
theoretically (see appendix F.7).

Thus, the scaling (30) and the theory that leads to it
(appendix F) appear to be sound and successfully reproduced
in our simulations16.

3.4. Numerical tests of the role of collisions and zonal modes

With the theoretical argument presented in section 3.2 in mind,
let us now build up the evidence that the long-time steady state
of the ETG turbulence in our simulations is controlled by
zonal–nonzonal interactions and by the electron–ion collisional
damping of the zonal modes. First, we remark that while linear
simulations (see appendix D) indicate that the linear instability
growth rates may be comparable to the nominal (experimental)
collisionality, the growth rates depend only weakly on colli-
sionality. It does not seem plausible that such insensitive linear
physics can explain the strong collisionality dependence of the
nonlinearly saturated state. Clues to the actual (nonlinear) origin
of this dependence can be obtained via nonlinear simulations
with modified dynamics, as described below.

First let us show that the zonal component regulates the
amplitude of the rest of the turbulence, which determines the
heat flux. The cyan and purple curves in figure 5 show the time
evolution of the heat flux in simulations with identical para-
meters to one of the simulations in figure 2, but with the non-
linear term artificially adjusted in such a way that the zonal
modes no longer affect the evolution of the nonzonal modes:
namely, the zonal components have been zeroed out in the
calculation of the nonlinear term, so that in equation (6),
á ñ �· hvE is replaced by á ñ �· hvE,NZ NZ. The zonal modes are
still allowed to be nonlinearly driven by the nonzonal modes,
but the zonal modes do not then feed back on the nonzonal
modes; the nonzonal evolution is entirely independent of the
zonal evolution. This eliminates the nonlinear terms used to
obtain the dominant balance (24). The heat-flux collapse

occuring in the full simulation is prevented by this change,
confirming that the collapse is indeed mediated by the effect of
the zonal modes (which was turned off) on the nonzonal modes
(which carry the heat flux). The ‘quasi-saturated’ streamer-
dominated state is thus just the saturated state that would have
emerged had the zonal flows been prohibited or suppressed.

Collisions damp the zonal modes, and in this context are
important precisely because they are small, as this means that
the finite zonal fields that emerge from any fast collisionless
evolution [24] are damped very weakly and so can grow to
dynamically significant amplitudes and regulate the turbu-
lence. Let us show that it is the electron–ion collisions that
affect the zonal modes in the crucial way; these are
momentum non-conserving (for electrons), as they act to relax
the electron flow and thereby dissipate the associated current
—in other words, they give rise to Ohmic resistivity (see
discussion in section 2.3). In figure 6, we show time evolution
of the heat flux corresponding to two different collisionalities
in the same series of simulations (the two shown as red
squares in figure 3—the large-box simulations with

=a L 3.42T ). The heat flux in the higher-collisionality
simulation is shown by the cyan curve, the heat flux in the
lower-collisionality one by the red curve. If we rerun the
higher-collisionality simulation with nei unchanged but nee

reduced to the lower value (blue curve), or with the zonal
collisionality unchanged but the nonzonal collisionality
reduced to the lower value (green curve), there is no sig-
nificant change in the saturated heat flux. By contrast, if we
reduce only nei, leaving nee unchanged (purple curve), or if we
reduce only the zonal collisionality, leaving the nonzonal
collisionality unchanged (yellow curve), the heat flux drops to
a value consistent with the lower-collisionality case (red).
Thus it is the electron–ion collisions on the zonal component
that primarily determine the heat-flux collisionality
dependence.

3.5. Simplified simulations for extended collisionality range

We have argued that it is the effect of electron–ion collisions
on the zonal modes that sets the collisionality dependence of
the saturated heat flux. Collisions in the nonzonal gyrokinetic
equation (19) are regularising, in that collisions are needed to
dissipate the fine structure that the distribution function

Figure 5. The large-box simulation shown in figure 2 (yellow) was restarted at =t a v8397.7 te without zonal interactions in the nonzonal
evolution equation (cyan). The heat flux in this modified simulation returns to a level that is close to the high early ‘quasi-saturated’ level. For
direct comparison, the same modified simulation was also rerun from initial noise, giving the same heat flux level (purple).

16 It is perhaps worth pointing out that such an agreement is only possible in
simulations that use a sufficiently realistic electron gyrokinetic collision
operator (see section 2.3), an indispensable property being momentum
conservation by the electron–electron collisions and a correct capturing of
Ohmic resistivity by the electron–ion ones. See, however, section 3.5 for
certain simplifications that are allowed.
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“Quasi-saturated” state

Disconnecting zonal feedback on drift waves returns the system
to the “quasi-saturated” streamery state



Collisions Now Matter

in the first gyrokinetic simulations, which did not include
collisions [10, 11] (and did not correspond to near-threshold
conditions in a spherical tokamak). Whereas the ITG turbu-
lent state has long been believed to be zonal-flow dominated
[26], the ETG fluctuations were characterised by long radial
eddies (‘streamers’) that enhanced the transport to a level
comparable with ITG turbulence, overcoming the reduction
by a factor of ( )m me i

1 2 expected from the relationship
between the electron and ion gyroscales (the scales at which
the two types of fluctuations were driven).

The present study differs from the more traditional
approach to modelling ETG turbulence in three respects:
collisions are included; simulations are run for a much longer
time; and the equilibrium parameters correspond to the
experimental situation in a real device, namely MAST, and
therefore place the system close to a marginal state with
respect to the ETG drive (note also that MAST is a spherical
tokamak, so has a somewhat different magnetic geometry
compared to the more prevalent large fusion devices such as
TFTR, JET or ITER).

As a result, we find that, in application to the physical
regime that we have considered, the standard picture of ETG
transport is in need of revision. The high-transport, streamer-
dominated nonlinear state does indeed emerge, and is not
strongly dependent on the collisionality of the plasma, but it
persists only transiently, over relatively short simulation
times (short compared to the energy confinement time but
still long compared to a typical eddy turnover time, and long
compared to typical simulation times used for ETG turbu-
lence in the past). It turns out that this state is not entirely
steady—while the heat flux might appear to be statistically
stationary, there is a slow growth of the zonal component of
the fluctuations, which eventually (after ~tv ate a few
thousand) reaches dynamical strength compared to the
transport-setting nonzonal modes and proceeds to change
the character of the turbulence. A new, long-time, zonal-
dominated saturated state emerges, whose structure is more
reminiscent of what is traditionally expected of ITG, rather
than ETG, turbulence (see figure 1 and further discussion in
section 4.2). We emphasise that it is the final saturation level
of the heat flux in gyrokinetic flux-tube simulations, aver-
aged over the turbulent fluctuation scales in length and time,
that is physically relevant for transport calculations. We
have found that the turbulent heat flux supported by the new
long-time nonlinear state can be much lower than in the

Figure 7. Variation of (a) the time-averaged electron heat flux Q QgB, (b) the rms zonal velocity fkZ Z, adding to the points from figure 3
(now circles) further points (red crosses) obtained by varying only the electron–ion collisionality nei, but keeping the electron–electron
collisionality at the nominal value, n n=ee nom, all at the nominal temperature gradient =a L 3.42T . The dot-dashed line shows the
experimental scaling (1) and the dotted line shows the theoretical linear scaling, *nµQ QgB , equation (31).

Figure 8. Zonal electrostatic potential fZ in a flux-tube cross-section
in the outboard midplane as a function of the radial spatial
coordinate x and time, for the same ‘large-box’ simulation as shown
in figure 2 (n n= 0.2 nom, =a L 3.3T ). The black line shows the
start of the time-averaging window used to characterise the saturated
state.
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(in the “quasi-saturated” state,
heat flux did not depend on

collisionality)

Note: crosses are obtained 
by varying only      .
This will make sense in a moment.
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of the heat flux in gyrokinetic flux-tube simulations, aver-
aged over the turbulent fluctuation scales in length and time,
that is physically relevant for transport calculations. We
have found that the turbulent heat flux supported by the new
long-time nonlinear state can be much lower than in the
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Figure 8. Zonal electrostatic potential fZ in a flux-tube cross-section
in the outboard midplane as a function of the radial spatial
coordinate x and time, for the same ‘large-box’ simulation as shown
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(in the “quasi-saturated” state,
heat flux did not depend on

collisionality)

MAST claims [Valovic et al. 2011, NF 51, 073045] that

We will show that 
this makes sense theoretically

Note: crosses are obtained 
by varying only      .
This will make sense in a moment.



Zonal Modes Are Slow

resistivity:

g n r~ ( )k , 30ei peZ Z
2 2

where nei is the electron–ion collision rate and r r= B Bpe e p is
the ‘poloidal Larmor radius’ of the electrons (Bp is the
poloidal magnetic field; see appendix F.4 for a more precise
definition of rpe). Using (30) in (29), we finally obtain

n
n~ µ

⎛
⎝⎜

⎞
⎠⎟ ( )Q

Q v a
B
B

a
L

. 31ei

te p T
ei

gB

2

Thus, a relatively simple theoretical argument has produced a
linear scaling of the heat flux with collisionality. Note that all
dependence on kZ or any other wave numbers has cancelled in
the final expression (31), and so, in order to obtain the heat
flux, we need not know the spatial scales of either zonal or
nonzonal modes. Considering the simplicity of the argument,
and the level of agreement between it, our numerical results
(figure 3), and the experimental MAST scaling (1), we find it
quite compelling.

3.3. Damping of zonal modes

In the theoretical argument of section 3.2, a crucial step was
to use the expression (30) for the collisional damping of the
zonal modes, which allowed us to estimate the heat flux
according to (29) and avoid having to theorise about the
characteristic scale of the zonal modes (a nontrivial question,
with, as our simulations indicate, possibly a nonuniversal
answer). In appendix F, the damping rate (30) is derived
analytically. Physically, the situation can be summarised as
follows.

Consider a zonal perturbation with some perpendicular
wave number kx satisfying (20) with zero right-hand side—a
linear equation. In the absence of collisions, this perturbation
will decay quickly (on the time scale~a vte), but not to zero,
leaving a finite residual zonal field [24]. With collisions
present, after a period of a few collision times, which is still
much shorter than the damping time, n g n r~- - -� ( )kx e

1
Z

1 2 2 1

in the long-wavelength limit r �k 1x e , it is possible to show
that, to lowest order in rkx e, the remaining perturbation is a
perturbed Maxwellian with a density (or, equivalently, f) and
a temperature perturbation, both constant on each flux sur-
face. These perturbations then decay diffusively due to
perpendicular particle diffusion (equivalently, resistivity)
arising from the collision operator. We already saw in
section 2.3 that the gyrokinetic collision operator (15) con-
tains FLR terms that have the form of a spatial diffusion.
These terms correspond to the displacement of gyrocentres by
distances r~ e due to collisions during Larmor rotation. Sol-
ving the ‘zonal transport’ problem more carefully, one can
show that collisions also displace the centres of banana (and
corresponding passing) orbits by distances of order the
poloidal gyroradius r r= ( )B Bpe p e, which is larger. This
leads to the damping rate (30). It is proprtional to nei (rather
than nee, on which it depends weakly) because it is essentially
the Ohmic resistive damping of electron currents (both

parallel and perpendicular; see appendix F.4), and it is due to
electron–ion friction (see [25]).

The calculation of appendix F, where this is demon-
strated more carefully, can be checked in our numerical
simulations, to ascertain that it is indeed this effect that is
responsible for the zonal damping. Figure 4 shows the zonal
damping rate normalised by the collision frequency, g nZ , for
a number of simulations in which the nonlinearity in
equation (20) was turned off (the right-hand side set to zero)
and the zonal field allowed to decay linearly. We see that, for
a range of collisionalities ν and in a broad range of wave
numbers rkx e, the scaling (30), g n r~ kx peZ

2 2 , is followed
quite well. As a further successful test, we find that if we turn
off magnetic drifts ( �· hvB in equation (20)), thus removing
the banana orbits, the zonal damping rates drop by close to an
order of magnitude (blue open circles in figure 4). This is
roughly consistent with a reduction of gZ by a factor of

» »( ) ( )B B qR r 18p
2 2 in our geometry, to g n r~ kx eZ

2 2,
with the dominant diffusion due in this case to finite Larmor
orbits, as explained above.

Finally, we test the theoretical expectation that the
dominant contribution to the damping of the electron zonal
flows, which are also currents, is proportional specifically to
the electron–ion collision frequency nei. Figure 4 (black
crosses) shows that when the electron–ion collisions are

Figure 4. Zonal damping rate normalised to collisionality, g nZ ,
versus rkx e, spanning the range of collisionalities shown in figure 3
(solid colours). The final states of various saturated nonlinear
simulations were used as initial conditions, with the nonlinearity
switched off. Also shown (black crosses) are the corresponding
damping rates for a simulation at n n= nom in which electron–ion
collisions were turned off (formally by setting =Z 0;eff see
section 2.3); and a simulation at n n= nom in which electron–ion
collisions were retained but magnetic drifts were turned off (blue
open circles). The solid line is the slope µ kx

2, corresponding to the
scaling (30); the dashed line is µ kx

4, corresponding to the scaling
expected when n = 0ei (see appendix F.7).
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To separate the evolution of f and dT , we take the
density and energy moments of (F.17). Integrating it over
velocities, and noting that, by conservation of particles,
ò á ñ =[ ]Cvd ... 03 , we get23
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Only the electron–ion collision terms have survived
because, to lowest order, conservation of momentum by the
electron–electron collisions implies

ò ò r r= =& [ ] [ ] ( )( ) ( )v C h C hv vd 0, d 0. F.19ee ee x x
3 1 3 0

In the same vein, multiplying (F.17) by v vte
2 2 and inte-

grating over velocities, we find, using energy conservation
by collisions, ò á ñ =[ ]v Cvd ... 03 2 ,

The difference between this equation and (F.18) is that the
contributions from electron–electron collisions do not vanish

(because same-species collisions can support non-zero heat
fluxes).

F.6. Damping rate

We do not need to solve the neoclassical equation (F.13) for ( )h 1

explicitly to see that, this equation being linear, ( )h 1 will be a
linear combination of fe T and dT T with velocity-dependent
coefficients, all of which are proportional to rk ;x pe any homo-
geneous part of ( )h 1 satisfies (F.6) and so can be absorbed into

( )h 0 . Therefore, we may schematically represent (F.18) and
(F.20) as the following matrix equation at this order24:
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where aij and bij are dimensionless coefficients that depend
only on equilibrium parameters. Clearly, if n = 0ei , the matrix
is defective (has a zero row corresponding to the upper
equation (F.21)) and the damping rate of both the potential
and temperature perturbations of the slowest damped eigen-
mode vanishes. Therefore,

g n rµ ( )k . F.23ei x peZ
2 2

Figure E5. Electrostatic potential f at the outboard midplane, for n n= 0.2 nom, =a L 3.3T : (a) quasi-saturated state at =t a v1204.2 te,
(b) long-time saturated state at =t a v7841.5 te, for small-box simulations showing 2×2 copies of each periodic domain. The large-box
version of this simulation is shown in figure 1.
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23 The last term in (F.18) is related to the spatial FLR diffusion term that we
wrote out explicitly in the gyroaveraged collision operator (15).

24 Note that in the absence of magnetic drifts, in a straight field, =( )h 01 and
we must replace rpe with re everywhere, with the collisional evolution of the
zonal modes now controlled by the FLR spatial-diffusion terms in the
gyrokinetic collision operator.
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Figure E5. Electrostatic potential f at the outboard midplane, for n n= 0.2 nom, =a L 3.3T : (a) quasi-saturated state at =t a v1204.2 te,
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version of this simulation is shown in figure 1.
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23 The last term in (F.18) is related to the spatial FLR diffusion term that we
wrote out explicitly in the gyroaveraged collision operator (15).

24 Note that in the absence of magnetic drifts, in a straight field, =( )h 01 and
we must replace rpe with re everywhere, with the collisional evolution of the
zonal modes now controlled by the FLR spatial-diffusion terms in the
gyrokinetic collision operator.
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So it takes a while to develop zonal modes
and it is hard to get rid of  them.

Hence the second timescale in the problem
and hence also collisionality dependence

(only e-i collisionality entering the zonal
part of  GK equation matters)

Note: we have verified numerically that 
only the zonal e-i collisionality affects 
the scaling of  the heat flux
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Note: this argument is unlikely 
to be valid far from threshold: 
presumably, NZ-NZ interactions
will start to matter
[see Barnes et al. 2011, PRL 107, 115003]
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in the first gyrokinetic simulations, which did not include
collisions [10, 11] (and did not correspond to near-threshold
conditions in a spherical tokamak). Whereas the ITG turbu-
lent state has long been believed to be zonal-flow dominated
[26], the ETG fluctuations were characterised by long radial
eddies (‘streamers’) that enhanced the transport to a level
comparable with ITG turbulence, overcoming the reduction
by a factor of ( )m me i

1 2 expected from the relationship
between the electron and ion gyroscales (the scales at which
the two types of fluctuations were driven).

The present study differs from the more traditional
approach to modelling ETG turbulence in three respects:
collisions are included; simulations are run for a much longer
time; and the equilibrium parameters correspond to the
experimental situation in a real device, namely MAST, and
therefore place the system close to a marginal state with
respect to the ETG drive (note also that MAST is a spherical
tokamak, so has a somewhat different magnetic geometry
compared to the more prevalent large fusion devices such as
TFTR, JET or ITER).

As a result, we find that, in application to the physical
regime that we have considered, the standard picture of ETG
transport is in need of revision. The high-transport, streamer-
dominated nonlinear state does indeed emerge, and is not
strongly dependent on the collisionality of the plasma, but it
persists only transiently, over relatively short simulation
times (short compared to the energy confinement time but
still long compared to a typical eddy turnover time, and long
compared to typical simulation times used for ETG turbu-
lence in the past). It turns out that this state is not entirely
steady—while the heat flux might appear to be statistically
stationary, there is a slow growth of the zonal component of
the fluctuations, which eventually (after ~tv ate a few
thousand) reaches dynamical strength compared to the
transport-setting nonzonal modes and proceeds to change
the character of the turbulence. A new, long-time, zonal-
dominated saturated state emerges, whose structure is more
reminiscent of what is traditionally expected of ITG, rather
than ETG, turbulence (see figure 1 and further discussion in
section 4.2). We emphasise that it is the final saturation level
of the heat flux in gyrokinetic flux-tube simulations, aver-
aged over the turbulent fluctuation scales in length and time,
that is physically relevant for transport calculations. We
have found that the turbulent heat flux supported by the new
long-time nonlinear state can be much lower than in the

Figure 7. Variation of (a) the time-averaged electron heat flux Q QgB, (b) the rms zonal velocity fkZ Z, adding to the points from figure 3
(now circles) further points (red crosses) obtained by varying only the electron–ion collisionality nei, but keeping the electron–electron
collisionality at the nominal value, n n=ee nom, all at the nominal temperature gradient =a L 3.42T . The dot-dashed line shows the
experimental scaling (1) and the dotted line shows the theoretical linear scaling, *nµQ QgB , equation (31).

Figure 8. Zonal electrostatic potential fZ in a flux-tube cross-section
in the outboard midplane as a function of the radial spatial
coordinate x and time, for the same ‘large-box’ simulation as shown
in figure 2 (n n= 0.2 nom, =a L 3.3T ). The black line shows the
start of the time-averaging window used to characterise the saturated
state.
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Note: this argument is unlikely 
to be valid far from threshold: 
presumably, zonal flows will be 
limited by tertiary instability,
not collisional viscosity
[see Rogers et al. 2000, PRL 85, 5336]
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in the first gyrokinetic simulations, which did not include
collisions [10, 11] (and did not correspond to near-threshold
conditions in a spherical tokamak). Whereas the ITG turbu-
lent state has long been believed to be zonal-flow dominated
[26], the ETG fluctuations were characterised by long radial
eddies (‘streamers’) that enhanced the transport to a level
comparable with ITG turbulence, overcoming the reduction
by a factor of ( )m me i

1 2 expected from the relationship
between the electron and ion gyroscales (the scales at which
the two types of fluctuations were driven).

The present study differs from the more traditional
approach to modelling ETG turbulence in three respects:
collisions are included; simulations are run for a much longer
time; and the equilibrium parameters correspond to the
experimental situation in a real device, namely MAST, and
therefore place the system close to a marginal state with
respect to the ETG drive (note also that MAST is a spherical
tokamak, so has a somewhat different magnetic geometry
compared to the more prevalent large fusion devices such as
TFTR, JET or ITER).

As a result, we find that, in application to the physical
regime that we have considered, the standard picture of ETG
transport is in need of revision. The high-transport, streamer-
dominated nonlinear state does indeed emerge, and is not
strongly dependent on the collisionality of the plasma, but it
persists only transiently, over relatively short simulation
times (short compared to the energy confinement time but
still long compared to a typical eddy turnover time, and long
compared to typical simulation times used for ETG turbu-
lence in the past). It turns out that this state is not entirely
steady—while the heat flux might appear to be statistically
stationary, there is a slow growth of the zonal component of
the fluctuations, which eventually (after ~tv ate a few
thousand) reaches dynamical strength compared to the
transport-setting nonzonal modes and proceeds to change
the character of the turbulence. A new, long-time, zonal-
dominated saturated state emerges, whose structure is more
reminiscent of what is traditionally expected of ITG, rather
than ETG, turbulence (see figure 1 and further discussion in
section 4.2). We emphasise that it is the final saturation level
of the heat flux in gyrokinetic flux-tube simulations, aver-
aged over the turbulent fluctuation scales in length and time,
that is physically relevant for transport calculations. We
have found that the turbulent heat flux supported by the new
long-time nonlinear state can be much lower than in the

Figure 7. Variation of (a) the time-averaged electron heat flux Q QgB, (b) the rms zonal velocity fkZ Z, adding to the points from figure 3
(now circles) further points (red crosses) obtained by varying only the electron–ion collisionality nei, but keeping the electron–electron
collisionality at the nominal value, n n=ee nom, all at the nominal temperature gradient =a L 3.42T . The dot-dashed line shows the
experimental scaling (1) and the dotted line shows the theoretical linear scaling, *nµQ QgB , equation (31).

Figure 8. Zonal electrostatic potential fZ in a flux-tube cross-section
in the outboard midplane as a function of the radial spatial
coordinate x and time, for the same ‘large-box’ simulation as shown
in figure 2 (n n= 0.2 nom, =a L 3.3T ). The black line shows the
start of the time-averaging window used to characterise the saturated
state.

10

Plasma Phys. Control. Fusion 59 (2017) 055002 G J Colyer et al

q. e. d.

nonzonal zonal



Conclusions

F. van Wyk et al. 2016, JPP 82, 905820609
F. van Wyk et al. 2017, PPCF 59, 114003
M. F. J. Fox et al. 2017, PPCF 59, 034002
G. J. Colyer et al. 2017, PPCF 59, 055002 

Ø Electrostatic GK with kinetic electrons  adequately describes ion-scale 
turbulence in the presence of  flow shear in MAST.

Ø This turbulence is subcritical.
Ø The transition to turbulence occurs via an intermediate state dominated by 

long-lived coherent structures, which become more numerous away from 
threshold until eventually overlapping, breaking up and turning into vanilla ITG 
turbulence. 

Ø Experiment appears to sit at the boundary of  these regimes.
Ø Tilted correlation functions and skewed density distributions are distinctive 

properties of  the near-threshold regime. Symmetry is restored away from the 
threshold.

Ø ETG turbulence near threshold has a long-time saturated regime dominated by 
zonal flows, rather than settling in the usual “streamery” state.

Ø Heat flux in this regime scales linearly with collisionality, consistent with 
experimental scaling reported for MAST; the origin of  this scaling is the slow 
decay rate of  the zonal flows set by collisional viscosity.  
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